• M. Hermus, A. Mansouri Tehrani, J. Brgoch, Determining a Structural Distortion and Anion Ordering in La2Si4N6C via Computation and Experiment, Inorg. Chem. 201655, 9454–9460. [DOI: 10.1021/acs.inorgchem.6b01687]
  • A. C. Duke, E. Finley, M. Hermus, J. Brgoch, Yellow-Green Luminescence and Extreme Thermal Quenching in Sr6M2Al4O15:Eu2+, (M = Y, Lu, Sc), Solid State Sci. 2016, 60, 108–113. [DOI: 10.1016/j.solidstatesciences.2016.08.013]
  • M. Hermus, P.-C. Phan, J. Brgoch, Ab Initio Structure Determination and Photoluminescent Properties of an Efficient, Thermally Stable Blue Phosphor: Ba2Y5B5O17:Ce3+, Chem. Mater. 2016, 28, 1121-1127. [DOI: 10.1021/acs.chemmater.5b04542]
  • J. Brgoch, M. Hermus, Pressure-stabilized Ir3–in Superconducting Potassium Iridide, J. Phys. Chem. C 2016120, 20033–20039. [DOI: 10.1021/acs.jpcc.6b06732]
  • M. Hermus, J. Brgoch, Phosphors-by-Design: Approaches Towards the Development of Advanced Luminescent Materials, ECS Interface 2015, 24, 55–59. [DOI: 10.1149/2.F06154if] (Invited viewpoint article)
  • D. B. Henge, M. Hermus, C. F. Litterscheid, N. Wagner, J. Beck, B. Albert, J. Brgoch, Discovery of γ‐MnP4 and the Polymorphism of Manganese Tetraphosphide, Inorg. Chem. 2015, 54, 8761–8768. [DOI: 10.1021/acs.inorgchem.5b01372] (co-first author)
  • M. Hermus, J. P. Scheifers, R. Touzani, B. P. T. Fokwa, Electronic Pseudogap-Driven Formation of New Double-Perovskite-like Borides within the Sc2Ir6–xTxB (T = Pd, Ni; x = 0–6) Series, Inorg. Chem. 2015, 54, 4056–4063. [DOI: 10.1021/acs.inorgchem.5b00292]
  • M. Hermus, B. P. T. Fokwa, Experimental and First-Principles Studies of the Ternary Borides Ta3Ru5B2 and M3–xRu5+xB2 (M = Zr, Hf), Eur. J. Inorg. Chem. 2014, 3085–3094. [DOI: 10.1002/ejic.201402206]
  • M. Hermus, M. Yang, D. Grüner, F. J. DiSalvo, B. P. T. Fokwa, Drastic Change of Magnetic Interactions and Hysteresis through Site-Preferential Ru/Ir Substitution in Sc2FeRu5–xIrxB2, Chem. Mater. 2014, 26, 1967–1974. [DOI: 10.1021/cm500237h]
  • M. Hermus, B. P. T. Fokwa, Competing Electronic and Size Effects When Substituting 3d Elements for Nb in Nb3Ru5B2 En Route to the Quaternary Phases (Nb2–xScx)4gNb2aRu5B2 (1 ≤ x < 2), Nb3–xMxRu5B2 (M = Ti, V; x ≈ 1), and Nb2+xM1–xRu5B2 (M = Cr, Mn, Fe, Co, Ni; 0 < x ≤ 0.5), Eur. J. Inorg. Chem. 2012, 4877–4884. [DOI: 10.1002/ejic.201200627]
  • B. P. T. Fokwa, M. Hermus, All-Boron Planar B6 Ring in the Solid State Phase Ti7Rh4Ir2B8, Angew. Chem. 2012, 124, 1734–1737; Angew. Chem. Int. Ed. 2012, 51, 1702–1705. [DOI: 10.1002/anie.201106798] Highlighted in Chemical and Engineering News (Issue 7, 2012)
  • M. Hermus, D. Geier, B. P. T. Fokwa, Nb3Ru5B2 – The First Ternary Phase in the Nb-Ru-B System: Synthesis, Crystal Structure, and Bonding Analysis, Z. Anorg. Allg. Chem. 2012, 638, 49–52. [DOI: 10.1002/zaac.201100374]
  • B. P. T. Fokwa, M. Hermus, Complete Titanium Substitution by Boron in a Tetragonal Prism: Exploring the Complex Boride Series Ti3−xRu5−yIryB2+x (0 ≤ x ≤ 1 and 1 < y < 3) by Experiment and Theory, Inorg. Chem. 2011, 50, 3332–3341. [DOI: 10.1021/ic102148x]
  • M. Hermus, B. P. T. Fokwa, Synthesis, Crystal Structure, and Ru/Ir Site Preference in the Complex Boride Series Ti2FeRu5–xIrxB2 and Zr2Fe1–δRu5–x+δIrxB2 (x = 1–4, δ < 0.15), Z. Anorg. Allg. Chem. 2011, 637, 947–954. [DOI: 10.1002/zaac.201100024]
  • M. Hermus, B. P. T. Fokwa, Zr2Ir6B with an eightfold superstructure of the cubic perovskite-like boride ZrIr3B0.5: Synthesis, crystal structure and bonding analysis, J. Solid State Chem. 2010, 183, 784–788. [DOI: 10.1016/j.jssc.2010.01.026]

Dipl.-Chem. Dr. rer. nat